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Abstract

In recent years, there has been a surge of interest in applying the method of orthogonal
polynomials to study inference problems on random graphs. This approach has been successful
in obtaining both positive results for new algorithms via subgraph counts and negative results for
computationally efficient algorithms in the framework of low-degree polynomials. To introduce
the method of orthogonal polynomials on random graphs, this self-contained tutorial focuses
on the planted clique model, which has become an iconic model in the study of statistical-to-
computational gaps. It is based on lectures given by the author in a topics course in Fall 2023
and a tutorial in Spring 2025 at Georgia Tech.
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1 Introduction to the planted clique model

The goal of this tutorial is to provide a self-contained introduction to the method of orthogonal
polynomials on random graphs and the statistical-to-computational gap for the planted clique
model, assuming a minimal background in this area. For a comprehensive review of this topic, see
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the recent survey [Wei25] on the method of low-degree polynomials for average-case computational
complexity.

1.1 Random graph models

A graph or an undirected graph G consists of a pair (V,E) where V is the vertex set and E ⊂
(
V
2

)
is the edge set. We take V = [n] := {1, 2, . . . , n}, and thus E ⊂

(
[n]
2

)
= {(i, j) : 1 ≤ i < j ≤ n}.

The adjacency matrix A ∈ {0, 1}n×n of the graph G is a symmetric matrix defined by Aij = 1
if (i, j) ∈ E and Aij = 0 if (i, j) /∈ E. The diagonal entries Aii are assumed to be 0 (i.e., no
self-loops). For simplicity, we often identify the graph with its adjacency matrix and write “graph
A” and “edge Aij”. If (i, j) ∈ E, then vertex j is a neighbor of vertex i. The number of neighbors
of vertex i is called the degree of vertex i.

In statistical inference, the observed graphs are typically assumed to be random graphs from
certain probabilistic models.

Definition 1.1 (Erdős–Rényi model). We say that a graph A is an Erdős–Rényi graph and write
A ∼ G(n, p) if A is a graph on n vertices with i.i.d. edges Aij ∼ Ber(p), where Ber(p) denotes the
Bernoulli distribution with parameter p ∈ [0, 1].

A clique is a complete subgraph of a graph. The planted clique model refers to one of the
following [Jer92, AKS98].

Definition 1.2 (Planted clique model). For a fixed k ∈ [n], take a uniformly random subset C ⊂ [n]
of size |C| = k. Conditional on C, we observe a graph A with Aij = 1 if i, j ∈ C and Aij ∼ Ber(1/2)
otherwise, where the edges are assumed to be independent. We write A ∼ G(n, 1/2, k).

Definition 1.3 (Planted clique model with independent vertices). For a fixed k ∈ [n], let C be a
random subset of [n] that contains each vertex i ∈ [n] independently with probability k/n. Condi-
tional on C, we observe a graph A with Aij = 1 if i, j ∈ C and Aij ∼ Ber(1/2) otherwise, where the
edges are assumed to be independent. We write A ∼ G̃(n, 1/2, k).

We mainly tackle the model G(n, 1/2, k) but also consider the second model G̃(n, 1/2, k) for
technical convenience. Note that in G̃(n, 1/2, k), the size of C concentrates around its expectation
k with high probability by the Chernoff bound if k → ∞ as n → ∞, so the two models are quite
similar.

1.2 Testing and estimation

Given a graph A from the planted clique model, we would like to recover the location of the clique.
An even more basic question is to tell whether a given random graph A contains a planted clique
at all. We now formalize these questions using the language of statistical hypothesis testing and
estimation.

Testing To test whether the observed graph A contains a planted clique, it amounts to test
between two hypotheses H0 and H1 defined as follows.

• Null hypothesis H0: A ∼ G(n, 1/2).

• Alternative hypothesis H1: A ∼ G(n, 1/2, k).
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A test ϕ : Rn×n → {0, 1} takes in the observation A and outputs a binary number indicating
the hypothesis. A criterion for a “good” test is the following. A test ϕ is consistent if it makes an
error with a vanishing probability as the size of the problem grows, i.e.,

P0{ϕ(A) = 1}+P1{ϕ(A) = 0} → 0 (1)

as n → ∞, where Pi denotes the probability under the hypothesis Hi. We are generally interested
in a set of conditions in terms of the problem parameters under which there exists a consistent test.
We say that the testing problem is “easy” and we achieve an “upper bound” or a “positive result”
when there is a consistent test; on the other hand, if there is no consistent test in a certain regime
of parameters, we say that the problem is “hard” and we achieve a “lower bound” or a “negative
result”.

Estimation Assuming that the observed graph A is from the planted clique model G(n, 1/2, k),
i.e., H1 is true, we are interested in estimating the location of the clique. More precisely, we aim
to construct an estimator Ĉ = Ĉ(A) ⊂ [n] that is close to the true subset C ⊂ [n]. Suppose that the
difference between C and Ĉ is measured by a certain loss L(C, Ĉ), e.g., L(C, Ĉ) = |Ĉ△C|. Then the
goal is to characterize the loss in high probability or the risk E[L(C, Ĉ)] as n → ∞.

We have exact recovery if Ĉ = C (with high probability as n → ∞). We have almost exact
recovery if L(C, Ĉ) = o(k) and partial recovery if L(C, Ĉ) is nontrivially small. If there is an
estimator Ĉ such that L(C, Ĉ) can be bounded from above, then we have an “upper bound” or a
“positive result”. If L(C, Ĉ) is bounded from below for any estimator in a class of functions, then we
have a “lower bound” or a “negative result”. We aim for upper and lower bounds of the same order
as n → ∞, and if so, we have achieved the optimal statistical rate of estimation for the problem.

Note that whether a testing problem is easy or hard may depend on what class of tests we
consider. The rates of estimation also depend on the function class of the estimator. Information-
theoretic bounds refer to those obtained when considering all tests or estimators that are measurable
with respect to A, while computational bounds refer to those obtained when considering a certain
class of computationally efficient tests or estimators. For example, a procedure that involves search-
ing over all possible subsets C ⊂ [n] may not give an efficient test or estimator because

(
n
|C|
)
is not

polynomial in n if |C| → ∞ as n → ∞.

1.3 Positive results for testing

We now consider the problem of detecting the planted clique, i.e., testing between H0 and H1. The
difficulty of this testing problem is clearly related to the size k of the planted clique:

• If k is too small, then it is impossible to distinguish H1 from H0. If k is sufficiently large, then
it is easy to distinguish H1 from H0.

• What is the threshold k above which we can distinguish H1 from H0 with probability 1 − o(1)
given infinite computational power? Here o(1) denotes a vanishing quantity as n → ∞. We call
this threshold the information-theoretic or statistical threshold.

• What is the threshold k above which we can distinguishH1 fromH0 with probability 1−o(1) using
a polynomial-time algorithm (from a certain class)? We call this threshold the computational
threshold.
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• Are the above two thresholds the same? If they are not the same, the gap between them is
referred to as the statistical-to-computational gap.

Similar questions can be asked for the estimation or recovery problem too. In the sequel, we
will discuss informally the information-theoretic and computational thresholds for detecting or
recovering a planted clique.

Information-theoretic threshold First, we provide evidence that the information-theoretic
threshold of k scales logarithmically in n.

For any k vertices, there are at most
(
k
2

)
possible edges. Therefore, under H0, the induced

subgraph of A on these vertices is a clique with probability 2−(
k
2). If k is a constant and n → ∞,

there are a growing number of sets of k vertices in A, each forming a clique with a constant
probability. Hence A contains a clique of size k with high probability for any constant k. As a
result, if under H1 a clique of constant size is planted, there is no significant difference between H0

and H1, and so we do not expect to be able to consistently detect the planted clique.
The above discussion suggests that the clique size k needs to grow in n if we aim for a positive

result. It also motivates us to study the clique number ω(A) which is defined to be the size of the
largest clique in A. If ω(A) ≤ k0 with high probability under H0 and k is larger than k0, then it is
possible to detect and locate the planted clique of size k under H1.

Proposition 1.4. Let A ∼ G(n, 1/2). For any constant ϵ > 0, we have

P{ω(A) ≤ (2 + ϵ) log2 n} → 1 as n → ∞.

Proof. For any fixed subset C ⊂ [n] of size k, it holds that

P{Aij = 1 for all distinct i, j ∈ C} = 2−(
k
2).

Since there are
(
n
k

)
subsets of [n] of size k, we obtain

P{ω(A) ≥ k} ≤ P{A contains a clique of size k} ≤
(
n

k

)
· 2−(

k
2) ≤ nk 2−

k(k−1)
2 .

For k := ⌊(2 + ϵ) log2 n⌋, we have

log2(n
k2−

k(k−1)
2 ) = k log2 n− k(k − 1)/2 → −∞

as n → ∞, so the conclusion holds.

This result immediately implies that there is a consistent test for distinguishing H1 from H0.

Corollary 1.5. Suppose that k > (2 + ϵ) log2 n for a constant ϵ > 0. Then

P0{ω(A) > (2 + ϵ) log2 n}+P1{ω(A) ≤ (2 + ϵ) log2 n} → 0 as n → ∞.

In other words, the test ϕ(A) := 1{ω(A) > (2 + ϵ) log2 n} is consistent in the sense of (1).

Later we will show that if k ≤ (2 − ϵ) log2 n for a constant ϵ > 0, then there is no consistent
test. Thus the information-theoretic threshold for planted clique detection is tightly characterized
to be k ≈ 2 log2 n.

The threshold for exact recovery of the planted clique under H1 turns out to be the same as
the detection threshold. In particular, the upper bound is achieved by taking Ĉ to be the vertex
set of the largest clique in A. It is not difficult to show that Ĉ = C with high probability under H1

if k ≥ (2 + ϵ) log2 n, although this is not immediately implied by Proposition 1.4.
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Computational threshold The issue with the above procedure based on the clique number ω(A)
is that it cannot be efficiently computed. In the worst case, finding the largest clique in A entails
an exhaustive search which takes exponential time. If we restrict our attention to polynomial-
time algorithms, the threshold of k in n for testing or recovering the planted clique may be much
larger than 2 log2 n. To see how large the computational threshold should be, let us consider
computationally efficient procedures based on the vertex degrees of A.

The following is an immediate consequence of Hoeffding’s inequality and the union bound.

Proposition 1.6. Let d1, . . . , dn denote the vertex degrees of A. Denote the total number of edges
in A by d(A) =

∑
(i,j)∈([n]

2 )
Aij. There is an absolute constant C > 0 such that the following holds.

• For A ∼ G(n, 1/2), we have

P

{∣∣∣d(A)− 1

2

(
n

2

)∣∣∣ > Cn
√

log n
}
≤ n−10.

• For A ∼ G(n, 1/2, k) as in Definition 1.2, we have

P

{∣∣∣d(A)− 1

2

[(n
2

)
+

(
k

2

)]∣∣∣ > Cn
√
log n

}
≤ n−10.

Moreover,

P

{
max
i∈[n]\C

∣∣∣di − n− 1

2

∣∣∣ > C
√
n log n

}
≤ n−10

and

P

{
max
i∈C

∣∣∣di − n+ k

2
+ 1

∣∣∣ > C
√

n log n
}
≤ n−10.

We then readily obtain the following corollary by simple union bounds.

Corollary 1.7. There is an absolute constant C > 0 such that the following holds.

• Suppose that k > 4
√
Cn (log n)1/4. Then

P0

{
d(A) >

1

2

(
n

2

)
+ Cn

√
log n

}
+P1

{
d(A) ≤ 1

2

(
n

2

)
+ Cn

√
log n

}
≤ 2n−10.

• Suppose that k > 4C
√
n log n. If we define Ĉ := {i ∈ [n] : di >

n−1
2 + C

√
n log n}, then

P1{Ĉ ̸= C} ≤ n−9.

Therefore, if k ≳
√
n log n, we have a consistent test between H0 and H1 and also an estimator

that achieves exact recovery with high probability under H1. The condition can be improved to
k ≳

√
n for several slightly more sophisticated algorithms. Note that this condition on k is still

much worse than the information-theoretic threshold k ≈ 2 log2 n. In fact, it is widely conjectured
that k ≍

√
n is the computational threshold for detecting or recovering a planted clique. That is to

say, if k ≪
√
n, then there may be no polynomial-time algorithm that can distinguish H1 from H0

consistently. We will prove a version of this lower bound for a certain class of efficient algorithms
later.
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2 Orthogonal polynomials and the second moment method

2.1 Polynomial basis of functions on a random graph

We start with the following general setup. Let A ∈ {0, 1}N be a random vector with independent
Bernoulli entries Ai ∼ Ber(pi) for i ∈ [N ]. For brevity, we write A ∼ Ber(p). Given the observation
A, suppose that we would like to do testing or estimation about the parameter vector p ∈ [0, 1]N .
Note that this model can be specialized to a random (undirected) graph by taking N =

(
n
2

)
and

viewing A as a matrix in {0, 1}n×n.
Since a test or an estimator is simply a function of A ∈ {0, 1}N , it is crucial to understand the

space of real-valued functions on {0, 1}N , denoted by

F :=
{
f : {0, 1}N → R

}
.

It is easily seen that F is a vector space isomorphic to R2N . Furthermore, since we are studying
A ∼ Ber(p), it is natural to endow F with the inner product

⟨f, g⟩ := E[f(A) g(A)]

for f, g ∈ F and the canonical norm ∥f∥ :=
√
⟨f, f⟩.

Next, we construct an orthonormal basis of the inner product space F . Towards this end, define

Āi :=
Ai − pi√
pi(1− pi)

which is a standardized version of Ai, i.e., E[Āi] = 0 and Var(Āi) = 1. For each α ⊂ [N ], define

ϕα(A) :=
∏
i∈α

Āi

and in particular, ϕ∅(A) := 1.

Theorem 2.1. The set {ϕα : α ⊂ [N ]} is an orthonormal basis of the inner product space F .

Proof. First, we check the orthonormality of {ϕα : α ⊂ [N ]}: for α, β ⊂ [N ],

E[ϕα(A)ϕβ(A)] = E

[∏
i∈α

Āi ·
∏
j∈β

Āj

]
=

∏
i∈α∩β

E[Ā2
i ] ·

∏
i∈α△β

E[Āi] =

{
1 if α = β,

0 if α ̸= β.

Moreover, F has dimension 2N and there are 2N choices of α ⊂ [N ], so we reach the conclusion.

In the orthonormal basis, each function ϕα(A) is in fact a polynomial in the entries (Ai)i∈[N ],
and the degree of ϕα(A) is |α|. Therefore, the space F of all real-valued functions on A is spanned
by polynomials of degrees at most N by the above theorem. The following theorem provides a
more general result.

Theorem 2.2. For any integer 0 ≤ D ≤ N , let F≤D denote the set of polynomials in (Ai)i∈[N ]

that have degrees at most D. Then {ϕα : α ⊂ [N ], |α| ≤ D} is an orthonormal basis of F≤D.
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Proof. Since we already have the orthonormality of {ϕα : α ⊂
(
[n]
2

)
, |α| ≤ D}, it suffices to show

that this set of polynomials spans F≤D. This can be proved by induction on D.
The base case D = 0 is trivial. For D ≥ 1, it suffices to note that for every α ⊂ [N ] with

|α| = D, the monomial
∏

i∈αAi can be expressed as a linear combination of ϕα(A) =
∏

i∈α Āi and
polynomials in (Ai)i∈[N ] of degrees at most D − 1.

We now specialize the above results to the setting of random graph [Jan94], in which case we will
see that the basis function ϕα(A) becomes more meaningful. To be more precise, we let N =

(
n
2

)
,

use the double index (i, j) ∈
(
[n]
2

)
in place of the single index i ∈ [N ], and view A ∈ {0, 1}n×n as

the adjacency matrix of the observed undirected graph. Any subset α ⊂
(
[n]
2

)
can be identified as

the subgraph of the complete graph Kn induced by the set of edges α. Fix a template graph H on
d vertices where d ∈ [n]. Then the number of copies of H as subgraphs in the graph A, known as
the subgraph count, is equal to ∑

α⊂([n]
2 ), α∼=H

∏
i∈α

Aij ,

where ∼= denotes graph isomorphism. Analogously, the quantity∑
α⊂([n]

2 ), α∼=H

ϕα(A) =
∑

α⊂([n]
2 ), α∼=H

∏
i∈α

Āij

is known as the signed subgraph count of copies of H in A. As the above theorems suggest, there
is essentially no loss of generality in focusing on (signed) subgraph counts, because they span the
entire space of real-valued functions on the given graph.

2.2 Lower bounds for testing

Continuing with the setup of the previous section, we now introduce general frameworks for proving
information-theoretic and computational lower bounds for testing.

One way to prove an information-theoretic lower bound is via the second moment method which
studies the χ2-divergence between P0 and P1, introduced in Section A.1. The following result follows
immediately from Lemma A.1 and Theorem A.2.

Theorem 2.3. For testing between H0 : A ∼ P0 and H1 : A ∼ P1, we have

inf
ϕ

(P0{ϕ(A) = 1}+P1{ϕ(A) = 0}) ≥ 1− 1

2

√
χ2(P1, P0),

where the infimum is over all possible tests ϕ from the sample space to {0, 1}. In particular, if
χ2(P1, P0) = o(1), then infϕ (P0{ϕ(A) = 1}+P1{ϕ(A) = 0}) = 1− o(1).

Moreover, if we have χ2(P1, P0) ≤ C for a constant C > 0, then

inf
ϕ

(P0{ϕ(A) = 1}+P1{ϕ(A) = 0}) ≥ c

for a constant c = c(C) > 0. In other words, there does not exist a consistent test.

7



By the above result, to establish an information-theoretic lower bound against all tests, it
suffices to control the χ2-divergence

χ2(P1, P0) = E0 L
2 − 1 = Var0(L) = ∥L∥2 − 1 = ∥L− 1∥2,

where we let L(A) = p1(A)/p0(A) denote the likelihood ratio and recall that ∥L∥2 = ⟨L,L⟩ is the
squared norm of L.

Next, we show that, if the goal is to establish a lower bound against polynomial tests of degrees
at most D, it suffices to study the projected likelihood ratio L≤D. To be more precise, recall that
F≤D denotes the set of polynomials in (Ai)i∈[N ] that have degrees at most D. Define the function
L≤D(A) to be the projection of the likelihood ratio L(A) onto F≤D, i.e.,

L≤D =
∑

α:|α|≤D

⟨L, ϕα⟩ϕα (2)

in the notation of Theorem 2.2. We also define the degree-D χ2-divergence between P1 and P0 as

χ2
≤D(P1, P0) := ∥L≤D∥2 − 1 = ∥L≤D − 1∥2, (3)

where the equality holds because ϕ∅ = 1 and ⟨L≤D, 1⟩ = ⟨L, 1⟩ = 1 for any integer D ≥ 0. It
follows that√

χ2
≤D(P1, P0) = max

f∈F≤D∩1⊥, ∥f∥≤1
⟨L, f⟩

= max
f∈F≤D,E0[f ]=0,Var0(f)≤1

E0[L(A)f(A)] = max
f∈F≤D,E0[f ]=0,Var0(f)≤1

E1[f(A)]. (4)

A polynomial f(A) in (Ai)i∈[N ] is said to

• strongly separate P0 and P1 if√
max {Var0(f(A)),Var1(f(A))} = o

(∣∣∣E1[f(A)]−E0[f(A)]
∣∣∣) as n → ∞;

• weakly separate P0 and P1 if√
max {Var0(f(A)),Var1(f(A))} = O

(∣∣∣E1[f(A)]−E0[f(A)]
∣∣∣) as n → ∞.

Note that if f(A) strongly separates P0 and P1, say, with E1[f(A)] > E0[f(A)], then we can take
τ := 1

2

(
E1[f(A)] +E0[f(A)]

)
, and by Chebyshev’s inequality,

P0{f(A) > τ} ≤ P0

{∣∣f(A)−E0[f(A)]
∣∣ > 1

2

(
E1[f(A)]−E0[f(A)]

)}
≤ 4Var0(f(A))

(E1[f(A)]−E0[f(A)])2
= o(1).

Similarly, P1{f(A) ≤ τ} = o(1). Therefore, the test ϕ(A) = 1{f(A) > τ} is consistent.
With the above definitions, it is straightforward to prove the following result.
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Theorem 2.4. If χ2
≤D(P1, P0) ≤ C for a constant C > 0, then there exists no polynomial f ∈ F≤D

that strongly separates P0 and P1.
Moreover, if χ2

≤D(P1, P0) = o(1), then there exists no polynomial f ∈ F≤D that weakly separates
P0 and P1.

Proof. Suppose there is a polynomial f(A) that strongly (respectively, weakly) separates P0 and P1.
Without loss of generality, we can standardize f(A) under P0, i.e., E0[f(A)] = 0 and Var0(f(A)) =
1. Then we have |E1[f(A)]| → ∞ as n → ∞ by the strong separation (respectively, |E1[f(A)]| ≥
c > 0 by the weak separation). This contradicts the assumption on χ2

≤D(P1, P0), in view of the
formula (4).

A couple of remarks follow. First, we never considered Var1(f(A)) in the above lower bounds.
Nevertheless, Var1(f(A)) will play an important role when we prove upper bounds. Second, it is also
possible to prove lower bounds directly on the type I and type II errors for low-degree polynomials,
at the cost of a more involved formulation which we do not present here.

2.3 Statistical-to-computational gap for planted clique detection

Using tools from the last section, we provide evidence supporting the conjectured statistical-to-
computational gap for the detection of a planted clique. Before proving the lower bounds, we remark
that taking D = polylog(n) typically yields a good prediction of the conjectured computational
threshold of a problem. Therefore, we mean a scaling of degree D polylogarithmic in n when
speaking of a “low-degree” polynomial.

In view of Theorems 2.3 and 2.4, to prove information-theoretic and computational lower bounds
for detecting a planted clique, it suffices to bound χ2(P1, P0) and χ2

≤D(P1, P0) respectively. Recall

that {ϕα : α ⊂
(
[n]
2

)
, |α| ≤ D} is an orthonormal basis of F≤D by Theorem 2.2. By (2) and (3),

χ2
≤D(P1, P0) =

∑
α:1≤|α|≤D

⟨L, ϕα⟩2 =
∑

α:1≤|α|≤D

E0[L(A)ϕα(A)]2 =
∑

α:1≤|α|≤D

E1[ϕα(A)]2. (5)

Moreover, for a random graph A on n vertices, the degree D is at most
(
n
2

)
, and {ϕα : α ⊂

(
[n]
2

)
}

is an orthonormal basis of the set of all functions of A. Hence we have χ2(P1, P0) = χ2
≤(n2)

(P1, P0).

Theorem 2.5 below consists of the main negative results for testing in the planted clique model.
(The low-degree calculation for second result in Theorem 2.5 can be found in [Hop18], and I am
not aware of a reference for proving the first result in this particular way.)

Theorem 2.5. Let P0 = G(n, 1/2) and P1 = G(n, 1/2, k). Denote the likelihood ratio by L = p1/p0.
Then we have the following results:

• If k ≤ (2− ϵ) log2 n for a fixed constant ϵ ∈ (0, 2), then χ2(P1, P0) = o(1).

• If k ≤ n1/2−ϵ for a fixed constant ϵ ∈ (0, 1/2) and D = o
(
( logn
log logn)

2
)
, then χ2

≤D(P1, P0) = o(1).

Proof. In view of (5), we need to bound E1[ϕα(A)] for α ⊂
(
[n]
2

)
. Recall that under P1, the vertex

set of the clique, denoted by C, is a uniformly random subset of [n] with a fixed size |C| = k. If
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either i or j is not in C, then conditionally Aij ∼ Ber(1/2) and E[Āij | C] = 0; otherwise, Aij = 1

and Āij =
Aij−1/2√
(1/2)·(1/2)

= 1. Therefore, by the independence of Aij conditional on C, we have

E1[ϕα(A)] = E

[ ∏
(i,j)∈α

E1[Āij | C]
]
= P{i, j ∈ C for all (i, j) ∈ α}

which is the probability that C contains all vertices of α viewed as a graph. Let v(α) denote the
number of vertices of α. If v(α) > k, the above probability is obviously zero. If v(α) ≤ k, we have

E1[ϕα(A)] =

(n−v(α)
k−v(α)

)(
n
k

) =
k(k − 1) · · · (k − v(α) + 1)

n(n− 1) · · · (n− v(α) + 1)
≤ (k/n)v(α). (6)

• First, consider the case D =
(
n
2

)
so that χ2(P1, P0) = χ2

≤D(P1, P0). Then we have

χ2(P1, P0) =
∑

α:1≤|α|≤(n2)

E1[ϕα(A)]2

≤
∑

α:2≤v(α)≤k

(k/n)2v(α) =
k∑

m=2

∑
α:v(α)=m

(k/n)2m ≤
k∑

m=2

nm2km/2(k/n)2m,

where the last step holds because there are at most
(
n
m

)
2(

m
2 ) ≤ nm2m

2/2 ≤ nm2km/2 graphs α
with v(α) = m. Furthermore, if k ≤ (2− ϵ) log2 n, then

n2k/2(k/n)2 ≤ nn1−ϵ/2
(2 log2 n

n

)2
=

(2 log2 n)
2

nϵ/2
= o(1).

We conclude that

χ2(P1, P0) ≤
k∑

m=2

(o(1))m = o(1).

• Next, consider the low-degree case where D = o
(
( logn
log logn)

2
)
. For brevity, we assume that

√
D

is an integer. For m ≤ 2
√
D, there are at most

(
n
m

)
2(

m
2 ) ≤ nm2m

2 ≤ nm2m
√
D graphs α such

that v(α) = m. For 2
√
D < m ≤ 2D, there are at most

(
n
m

)(
m
2

)D ≤ nmm2D graphs α such that
v(α) = m and |α| ≤ D. It follows that

χ2
≤D(P1, P0) ≤

∑
α:1≤|α|≤D

(k/n)2v(α) =
2D∑
m=2

∑
v(α)=m, |α|≤D

(k/n)2m

≤
2
√
D∑

m=2

nm2m
2
(k/n)2m +

2D∑
m=2

√
D

nmm2D(k/n)2m.

For the first term, note that for D = o
(
( logn
log logn)

2
)
and k ≤ n1/2−ϵ, we have

n22
√
D(k/n)2 ≤ neo(logn)(k/n)2 ≤ n1+o(1)n−1−2ϵ = o(1).
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Therefore,
2
√
D∑

m=2

nm2m
2
(k/n)2m ≤

2
√
D∑

m=2

(n22
√
D(k/n)2)m = o(1).

For the second term, note that for m = 2
√
D, we have

n2
√
D(2

√
D)2D(k/n)4

√
D =

(
n(k/n)2(2

√
D)

√
D
)2√D

≤
(
(k2/n)(log n)

o( logn
log logn

))2√D ≤
(
n−2ϵno(1)

)2√D
= o(1).

Moreover, for 2
√
D ≤ m < 2D, we have

nm+1(m+ 1)2D(k/n)2(m+1)

nmm2D(k/n)2m
≤ n(k/n)2

(
1 +

1

2
√
D

)2D

≤ (k2/n) e
√
D ≤ n−2ϵeo(logn) ≤ n−2ϵno(1) = o(1).

We conclude that
2D∑
2
√
D

nmm2D(k/n)2m = o(1).

The two terms combined yield that χ2
≤D(P1, P0) = o(1).

It is then straightforward to combine Theorem 2.5 with Theorems 2.3 and 2.4 to obtain
information-theoretic and computational lower bounds. Recall that Corollary 1.5 provides an
information-theoretic upper bound. Moreover, in Corollary 1.7, the total number of edges in A,
denoted by d(A), is used as the test statistic to give a computational upper bound. It is easily seen
that the degree-1 polynomial d(A) satisfies

√
max {Var0(d(A)),Var1(d(A))} ≤

√(
n

2

)
· 1
2
· 1
2
= o

(
1

2

(
k

2

))
= o

(∣∣∣E1[d(A)]−E0[d(A)]
∣∣∣)

if k ≫
√
n, so d(A) strongly separates P0 and P1 by definition in this regime. The statistical-to-

computational gap for planted clique detection is summarized as follows.

Theorem 2.6. Consider testing between H0 : A ∼ G(n, 1/2) and H1 : A ∼ G(n, 1/2, k).

• If k ≥ (2 + ϵ) log2 n for a fixed ϵ > 0, then there is a consistent test.

• If k ≤ (2− ϵ) log2 n for a fixed ϵ > 0, then there is no consistent test.

• If k ≫ n1/2, then there is a polynomial in (Aij)i<j of degree 1 that strongly separates P0 and P1.

• If k ≤ n1/2−ϵ for a fixed ϵ > 0, then there is no polynomial in (Aij)i<j of degree o
(
( logn
log logn)

2
)

that weakly separates P0 and P1.
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Remark 2.7. The information-theoretic part of Theorem 2.5, i.e., the bound on χ2(P1, P0), can
be proved by analyzing the likelihood ratio directly. Let p1(A | C) denote the density of A ∼ P1

conditional on C, so that

p1(A) =
1(
n
k

) ∑
C⊂[n], |C|=k

p1(A | C).

Then we have

L(A) =
p1(A)

p0(A)
=

1

(nk)
· 2−(

n
2)+(

k
2) · Tk(A)

2−(
n
2)

=
Tk(A)(

n
k

)
· 2−(

k
2)

=
Tk(A)

E0[Tk(A)]
, (7)

where Tk(A) denotes the number of cliques of size k in the observed graph A. It follows that

χ2(P1, P0) = E0[(L(A)− 1)2] =
Var(Tk(A))

(E0[Tk(A)])2
.

Therefore, it remains to understand the first two moments of the polynomial Tk(A) of degree
(
k
2

)
.

We omit the rest of the proof. This proof is in fact more “standard” and somewhat simpler than
that of Theorem 2.5 because we only need to analyze one polynomial rather than all of them.

A Information-theoretic tools

A.1 Divergences between probability distributions

Let p and q denote the probability density (or mass) functions of distributions P and Q respectively.
Suppose that P is absolutely continuous with respect to Q. Then p/q is the Radon–Nikodym
derivative. For any convex function f : (0,∞) → R such that f(1) = 0 and f is strictly convex at 1
(i.e., for any s, t > 0 and λ ∈ (0, 1) such that λs+(1−λ)t = 1, we have λf(s)+(1−λ)f(t) > f(1)),
the f -divergence between P and Q is defined as

Df (P∥Q) := E0

[
f
(p(X)

q(X)

)]
=

∫
q · f(p/q).

Using Jensen’s inequality, it is easy to check that Df (P∥Q) ≥ 0 where equality holds if and only if
P = Q. We consider two special f -divergences:

• Total variation distance: TV(P,Q) = 1
2

∫
|p− q|, i.e., f(x) = 1

2 |x− 1|.

• χ2-divergence: χ2(P,Q) =
∫
(p− q)2/q, i.e., f(x) = (x− 1)2.

Note that a “divergence” is not necessarily symmetric, so we only use the term “distance” when
the divergence is indeed symmetric. The following result is well-known and frequently used in the
literature.

Lemma A.1. We have

TV(P,Q) ≤ 1

2

√
χ2(P,Q).

Moreover, if χ2(P,Q) ≤ C for a constant C > 0, then there is a constant c = c(C) > 0 such that

TV(P,Q) ≤ 1− c.
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Proof. For the first bound, it suffices to note that

2TV(P,Q) = E0

∣∣∣∣pq − 1

∣∣∣∣ ≤
√
E0

[(p
q
− 1

)2
]
=

√
χ2(P,Q).

For the second result, note that 1− TV(P,Q) =
∫
min(p, q). We have(∫

√
pq

)2

=

(∫ √
min(p, q) ·max(p, q)

)2

≤
∫

min(p, q) ·
∫

max(p, q) ≤
∫

min(p, q) ·
∫
(p+ q) = 2

∫
min(p, q),

where we used the Cauchy–Schwarz inequality. Moreover,(∫
√
pq

)2

= exp

(
2 log

∫
√
pq

)
= exp

(
2 log

∫
pq>0

p

√
q

p

)
≥ exp

(
2

∫
pq>0

p log

√
q

p

)
= exp

(
−
∫
pq>0

p log
p

q

)
,

where we used Jensen’s inequality. Applying Jensen’s inequality again, we obtain∫
pq>0

p log
p

q
≤ log

∫
pq>0

p
p

q
= log

∫
q
(p
q

)2
= log(χ2(P,Q) + 1).

Combining everything, if χ2(P,Q) ≤ C, then
∫ √

pq ≥ c′ and so
∫
min(p, q) ≥ c for constants

c, c′ > 0. We conclude that TV(P,Q) ≤ 1− c.

We remark that the χ2-divergence enjoys a property called tensorization: The χ2-divergence
between two product distributions can be easily calculated from the χ2-divergences between indi-
vidual pairs of component distributions. To be more precise, let P = ⊗n

i=1Pi (i.e., P is the joint
distribution of (X1, . . . , Xn), where Xi ∼ Pi independently for i = 1, . . . , n) and Q = ⊗n

i=1Qi. It is
easy to verify that

χ2(P,Q) + 1 =
n∏

i=1

(
χ2(Pi, Qi) + 1

)
.

There is no such tensorization property for the total variation distance. Therefore, when bounding
the total variation distance between two product distributions, it is often convenient to bound it
by the χ2-divergence and use the tensorization property.

A.2 Neyman–Pearson lemma

Consider testing between two hypotheses H0 : A ∼ P0 and H1 : A ∼ P1. Let p0 and p1 denote their
respective densities (or masses).

Theorem A.2 (Neyman–Pearson). For testing between H0 : A ∼ P0 and H1 : A ∼ P1, we have

inf
ϕ

(
P0{ϕ(A) = 1}+P1{ϕ(A) = 0}

)
= 1− TV(P0, P1),
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where the infimum is over all possible tests ϕ from the sample space to {0, 1} and TV denotes the
total variance distance

TV(P0, P1) =
1

2

∫
|p0 − p1| = 1−

∫
min(p0, p1).

Moreover, the infimum is achieved by the likelihood ratio test ϕ∗ := 1{p1/p0 ≥ 1}.

Proof. The fact TV(P0, P1) = 1−
∫
min(p0, p1) is easy to check. Moreover, we have

P0{ϕ∗ = 1}+P1{ϕ∗ = 0} =

∫
{ϕ∗=1}

p0 +

∫
{ϕ∗=0}

p1

=

∫
{p1≥p0}

p0 +

∫
{p1<p0}

p1

=

∫
{p1≥p0}

min(p0, p1) +

∫
{p1<p0}

min(p0, p1)

=

∫
min(p0, p1) = 1− TV(P0, P1).

For any test ϕ, define R := {ϕ = 1}. Let R∗ := {p1 ≥ p0}. Then we have

P0{ϕ = 1}+P1{ϕ = 0} = P0{R}+ 1−P1{R}

= 1 +

∫
R
(p0 − p1)

= 1 +

∫
R∩R∗

(p0 − p1) +

∫
R∩(R∗)c

(p0 − p1)

= 1−
∫
R∩R∗

|p0 − p1|+
∫
R∩(R∗)c

|p0 − p1|

= 1−
∫

|p0 − p1|
(
1{R ∩R∗} − 1{R ∩ (R∗)c}

)
,

which is minimized at R = R∗.
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